Minggu, 05 Juni 2016


Nama  : Rio Nicolas Van Demorez N 
Kelas : 4IA25   
NPM   : 56412431 


Pengertian Komputasi Paralel

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Tidak berarti dengan mesin paralel semua program yang dijalankan diatasnya otomatis akan diolah secara parallel. 

Di dalam komputasi parallel ada yang dinamakan dengan pemrograman parallel. Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan (komputasi paralel), baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam suatu jaringan komputer lebih sering istilah yang digunakan adalah sistem terdistribusi (distributed computing).

Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan. Analogi yang paling gampang adalah, bila anda dapat merebus air sambil memotong-motong bawang saat anda akan memasak, waktu yang anda butuhkan akan lebih sedikit dibandingkan bila anda mengerjakan hal tersebut secara berurutan (serial). Atau waktu yg anda butuhkan memotong bawang akan lebih sedikit jika anda kerjakan berdua.

Terdapat dua hukum yang berlaku dalam sebuah parallel processing. yaitu:

Hukum Amdahl
Amdahl berpendapat, “Peningkatan kecepatan secara paralel akan menjadi linear, melipatgandakan kemampuan proses sebuah komputer dan mengurangi separuh dari waktu proses yang diperlukan untuk menyelesaikan sebuah masalah.”

Hukum Gustafson
Pendapat yang dikemukakan Gustafson hampir sama dengan Amdahl, tetapi dalam pemikiran Gustafson, sebuah komputasi paralel berjalan dengan menggunakan dua atau lebih mesin untuk mempercepat penyelesaian masalah dengan memperhatikan faktor eksternal, seperti kemampuan mesin dan kecepatan proses tiap-tiap mesin yang digunakan.


Tujuan Komputasi Paralel
  
Tujuan dari komputasi paralel adalah meningkatkan kinerja komputer dalam menyelesaikan berbagai masalah. Dengan membagi sebuah masalah besar ke dalam beberapa masalah kecil, membuat kinerja menjadi cepat.
Formula komputasi paralel yang diajukan pada hukum Amdahl :



Dimana a adalah banyaknya paralel yang terjadi. Secara teori, artinya proses penyelesaian masalah menjadi lebih cepat dengan menggunakan komputasi paralel.

1.     Parallelism Concept
  
Paralelisme (parallelism) lahir dari pendekatan yang biasa dipergunakan oleh para perancang sistem untuk menerapkan konsep pemrosesan konkuren. Teknik ini meningkatkan kecepatan proses dengan cara memperbanyak jumlah modul perangkat keras yang dapat beroperasi secara simultan disertai dengan membentuk beberapa proses yang bekerja secara simultan pada modul-modul perangkat keras tersebut. Secara formal, pemrosesan paralel adalah sebuah bentuk efisien pemrosesan informasi yang menekankan pada eksploitasi dari konkurensi kejadian-kejadian dalam proses komputasi.
  
Pemrosesan paralel dapat terjadi pada beberapa tingkatan (level) proses. Tingkatan tertinggi pemrosesan paralel terjadi pada proses di antara banyak job (pekerjaan) atau pada program yang menggunakan multiprogramming, time sharing, dan multiprocessing. Multiprogramming kemampuan eksekusi terhadap beberapa proses perangkat lunak dalam sebuah system secara serentak, jika dibandingkan dengan sebuah proses dalam satu waktu, dan timesharing berarti menyediakan pembagian selang waktu yang tetap atau berubah-ubah untuk banyak program. 
 
Multiprocessing adalah dukungan sebuah sistem untuk mendukung lebih dari satu prosesor dan mengalokasikan tugas kepada prosesor-prosesor tersebut. Multiprocessing sering diimplementasikan dalam perangkat keras (dengan menggunakan beberapa CPU sekaligus), sementara multiprogramming sering digunakan dalam perangkat lunak. Sebuah sistem mungkin dapat memiliki dua kemampuan tersebut, salah satu di antaranya, atau tidak sama sekali. Pemrosesan paralel dapat juga terjadi pada proses di antara prosedurprosedur atau perintah perintah (segmen program) pada sebuah program.
  
Untuk meningkatkan kecepatan proses komputasi, dapat ditempuh dua cara :
  
1.1.  Peningkatan kecepatan perangkat keras.
Komponen utama perangkat keras komputer adalah processor. Meskipun kecepatan processor dapat ditingkatkan terus, namun karena keterbatasan materi pembuatnya, tentu ada suatu batas kecepatan yang tak mungkin lagi dapat dilewati. Karena itu timbul ide pembuatan komputer multiprocessor. Dengan adanya banyak processor dalam satu komputer, pekerjaan bisa dibagi-bagi kepada masing-masing processor. Dengan demikian lebih banyak proses dapat dikerjakan dalam satu saat. Peningkatan kecepatan setiap proses bisa dicapai melalui peningkatan kecepatan perangkat lunak. Kecepatan perangkat lunak sangat ditentukan oleh algoritmanya.
   
1.2.  Peningkatan kecepatan perangkat lunak.
Program komputer untuk komputer sekuensial harus menyediakan sederetan operasi untuk dikerjakan oleh prosesor tunggal. Program komputer untuk komputer paralel harus menyediakan sederetan operasi untuk beberapa prosesor untuk dikerjakan secara paralel, termasuk operasi untuk mengatur dan mengitegrasikan prosesor-prosesor yang terpisah tersebut mengerjakan suatu komputasi yang koheren. Kebutuhan akan pembuatan dan pengaturan berbagai aktivitas komputasi paralel menambah dimensi baru proses dari pemrograman komputer. Algoritma untuk problem yang spesifik harus diformulasikan sedemikian rupa, agar menghasilkan aliran operasi paralel yang kemudian akan dieksekusi di prosesor yang berbeda. Karena itu, meskipun arsitektur multiprosesor dan multikomputer mempunyai pontensi yang tinggi untuk meningkatkan kemampuan komputasi, potensi ini akan tercapai melalui pengertian yang baik mengenai bahasa pemrograman paralel dan perancangan algoritma paralel.

2.     Distributed Processing  
        
Aktivitas memproses informasi dalam suatu organisasi yang dijalankan oleh jaringan komputer yang tersambung oleh saluran telekomunikasi yang terpusat pada fasilitas induk komputer biasa disebut dengan distributed processing.

Dalam penerapannya, proses ini menggunakan pemrosesan paralel pada beberapa mesin. Misalnya proses transaksi yang terjadi pada beberapa mesin ATM sebuah bank. Ketika ribuan nasabah menggunakan mesin ATM pada saat yang bersamaan, bayangkan berapa banyak proses yang harus dikerjakan jika hanya terdapat 1 komputer server. Oleh karena itu dengan menggunakan Distributed Processing, beban pemrosesan yang besar dapat di kerjakan oleh beberapa komputer yang terhubung oleh jaringan dalam waktu yang bersamaan secara simultan. Beban pemrosesan yang besar itu dipecah menjadi beberapa beban kecil guna mempercepat proses.

3.     Architectural Parallel Computer 
  
Dibawah ini akan dijelaskan beberapa macam arsitektur paralel komputer menurut Klasifikasi Flynn’s : 

1.  SISD

Single Instruction – Single Data. Komputer jenis ini hanya memiliki satu prosesor ( single processor ). Dimana semua instruksi di eksekusi secara serial ( terurut satu demi satu ) dan memungkinkan adanya overlapping di setiap bagian instruksi dalam pelaksanaan eksekusi. Komputer ini adalah tipe komputer konvensional. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP

2.  SIMD

Single Instruction – Multiple Data. Komputer jenis ini hanya dapat mengeksekusi satu instruksi dan memiliki lebih dari satu prosesor. Satu eksekusi dilakukan secara paralel pada data yang berbeda pada level lock-step. Komputer vektor adalah salah satu komputer paralel yang menggunakan arsitektur ini. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor ( GPU ). 

3.  MISD

Multiple Instructions – Single Data. Belum ada perwujudan nyata dari komputer jenis ini kecuali dalam bentuk prototipe untuk penelitian. Teorinya komputer ini memiliki satu prosesor dan mengeksekusi beberapa instruksi secara paralel tetapi praktiknya tidak ada komputer yang dibangun dengan arsitektur ini karena sistemnya tidak mudah dipahami. 

4.  MIMD

Multiple Instructions – Multiple Data. Komputer jenis ini dapat mengeksekusi lebih dari satu instruksi secara paralel dengan lebih dari satu prosesor. Tipe komputer ini yang paling banyak digunakan untuk membangun komputer paralel, bahkan banyak supercomputer yang menerapkan arsitektur ini. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.
 

Sumber :
  
http://nazaruddin.blog.unigha.ac.id/2013/08/24/pengertian-komputasi-paralel/
 
http://flashintata.blogspot.co.id/2013/05/parallel-computation.html
  
http://bungatiarakaristi.blogspot.co.id/2013/06/bab-4-softskill-parallel-computation.html


Nama  : Rio Nicolas Van Demorez N 
Kelas : 4IA25   
NPM   : 56412431 


Pengertian Quantum Computing

Merupakan alat hitung yang menggunakan mekanika kuantum seperti superposisi dan keterkaitan, yang digunakan untuk peng-operasi-an data. Perhitungan jumlah data pada komputasi klasik dihitung dengan bit, sedangkan perhitungan jumlah data pada komputer kuantum dilakukan dengan qubit. Prinsip dasar komputer kuantum adalah bahwa sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, dan bahwa mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Dalam hal ini untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika baru yang sesuai dengan prinsip kuantum.


 Sejarah singkat Quantum Computing
  
  • Pada tahun 1970-an pencetusan atau ide tentang komputer kuantum pertama kali muncul oleh para fisikawan dan ilmuwan komputer, seperti Charles H. Bennett dari IBM, Paul A. Benioff dari Argonne National Laboratory, Illinois, David Deutsch dari University of Oxford, dan Richard P. Feynman dari California Institute of Technology (Caltech).
  • Feynman dari California Institute of Technology yang pertama kali mengajukan dan menunjukkan model bahwa sebuah sistem kuantum dapat digunakan untuk melakukan komputasi. Feynman juga menunjukkan bagaimana sistem tersebut dapat menjadi simulator bagi fisika kuantum. 
  • Pada tahun 1985, Deutsch menyadari esensi dari komputasi oleh sebuah komputer kuantum dan menunjukkan bahwa semua proses fisika, secara prinsipil, dapat dimodelkan melalui komputer kuantum. Dengan demikian, komputer kuantum memiliki kemampuan yang melebihi komputer klasik.
  • Pada tahun 1995, Peter Shor merumuskan sebuah algoritma yang memungkinkan penggunaan komputer kuantum untuk memecahkan masalah faktorisasi dalam teori bilangan.
  • Sampai saat ini, riset dan eksperimen pada bidang komputer kuantum masih terus dilakukan di seluruh dunia. Berbagai metode dikembangkan untuk memungkinkan terwujudnya sebuah komputer yang memilki kemampuan yang luar biasa ini. Sejauh ini, sebuah komputer kuantum yang telah dibangun hanya dapat mencapai kemampuan untuk memfaktorkan dua digit bilangan. Komputer kuantum ini dibangun pada tahun 1998 di Los Alamos, Amerika Serikat, menggunakan NMR (Nuclear Magnetic Resonance).

Implementasi Quantum Computing

            Pada 19 Nov 2013 Lockheed Martin, NASA dan Google semua memiliki satu misi yang sama yaitu mereka semua membuat komputer kuantum sendiri. Komputer kuantum ini adalah superkonduktor chip yang dirancang oleh sistem D – gelombang dan yang dibuat di NASA Jet Propulsion Laboratories.

        NASA dan Google berbagi sebuah komputer kuantum untuk digunakan di Quantum Artificial Intelligence Lab menggunakan 512 qubit D -Wave Two yang akan digunakan untuk penelitian pembelajaran mesin yang membantu dalam menggunakan jaringan syaraf tiruan untuk mencari set data astronomi planet ekstrasurya dan untuk meningkatkan efisiensi searchs internet dengan menggunakan AI metaheuristik di search engine heuristical. 

            A.I. seperti metaheuristik dapat menyerupai masalah optimisasi global mirip dengan masalah klasik seperti pedagang keliling, koloni semut atau optimasi swarm, yang dapat menavigasi melalui database seperti labirin. Menggunakan partikel terjerat sebagai qubit, algoritma ini bisa dinavigasi jauh lebih cepat daripada komputer konvensional dan dengan lebih banyak variabel. 

           Penggunaan metaheuristik canggih pada fungsi heuristical lebih rendah dapat melihat simulasi komputer yang dapat memilih sub rutinitas tertentu pada komputer sendiri untuk memecahkan masalah dengan cara yang benar-benar cerdas. Dengan cara ini mesin akan jauh lebih mudah beradaptasi terhadap perubahan data indrawi dan akan mampu berfungsi dengan jauh lebih otomatisasi daripada yang mungkin dengan komputer normal.
 

1.     Entanglement

Entanglement adalah efek mekanik kuantum yang mengaburkan jarak antara partikel individual sehingga sulit menggambarkan partikel tersebut terpisah meski Anda berusaha memindahkan mereka. Contoh dari quantum entanglement: kaitan antara penentuan jam sholat dan quantum entanglement. Mohon maaf bagi yang beragama lain saya hanya bermaksud memberi contoh saja. Mengapa jam sholat dibuat seragam? Karena dengan demikian secara massal banyak manusia di beberapa wilayah secara serentak masuk ke zona entanglement bersamaan.

Pengertian Lain dari Entanglement :

Quantum entanglement adalah bagian dari fenomena quantum mechanical yang menyatakan bahwa dua atau lebih objek dapat digambarkan mempunyai hubungan dengan objek lainnya walaupun objek tersebut berdiri sendiri dan terpisah dengan objek lainnya. Quantum entanglement merupakan salah satu konsep yang membuat Einstein mengkritisi teori Quantum mechanical. Einstein menunjukkan kelemahan teori Quantum Mechanical yang menggunakan entanglement merupakan sesuatu yang “spooky action at a distance” karena Einstein tidak mempercayai bahwa Quantum particles dapat mempengaruhi partikel lainnya melebihi kecepatan cahaya. Namun, beberapa tahun kemudian, ilmuwan John Bell membuktikan bahwa “spooky action at a distance” dapat dibuktikan bahwa entanglement dapat terjadi pada partikel-partikel yang sangat kecil.

Penggunaan quantum entanglement saat ini diimplementasikan dalam berbagai bidang salah satunya adalah pengiriman pesan-pesan rahasia yang sulit untuk di-enkripsi dan pembuatan komputer yang mempunyai performa yang sangat cepat.


2.     Pengoperasian Data Qubit

Komputer kuantum memelihara urutan qubit. Sebuah qubit tunggal dapat mewakili satu, nol, atau, penting, setiap superposisi quantum ini, apalagi sepasang qubit dapat dalam superposisi kuantum dari 4 negara, dan tiga qubit dalam superposisi dari 8. Secara umum komputer kuantum dengan qubit n bisa dalam superposisi sewenang-wenang hingga 2 n negara bagian yang berbeda secara bersamaan (ini dibandingkan dengan komputer normal yang hanya dapat di salah satu negara n 2 pada satu waktu). Komputer kuantum yang beroperasi dengan memanipulasi qubit dengan urutan tetap gerbang logika quantum. Urutan gerbang untuk diterapkan disebut algoritma quantum.

     Sebuah contoh dari implementasi qubit untuk komputer kuantum bisa mulai dengan menggunakan partikel dengan dua putaran menyatakan: “down” dan “up”. Namun pada kenyataannya sistem yang memiliki suatu diamati dalam jumlah yang akan kekal dalam waktu evolusi dan seperti bahwa A memiliki setidaknya dua diskrit dan cukup spasi berturut-turut eigen nilai, adalah kandidat yang cocok untuk menerapkan sebuah qubit. Hal ini benar karena setiap sistem tersebut dapat dipetakan ke yang efektif spin -1/2 sistem.

3.     Quantum Gates

Pada saat ini, model sirkuit komputer adalah abstraksi paling berguna dari proses komputasi dan secara luas digunakan dalam industri komputer desain dan konstruksi hardware komputasi praktis. Dalam model sirkuit, ilmuwan komputer menganggap perhitungan apapun setara dengan aksi dari sirkuit yang dibangun dari beberapa jenis gerbang logika Boolean bekerja pada beberapa biner (yaitu, bit string) masukan. Setiap gerbang logika mengubah bit masukan ke dalam satu atau lebih bit keluaran dalam beberapa mode deterministik menurut definisi dari gerbang. dengan menyusun gerbang dalam grafik sedemikian rupa sehingga output dari gerbang awal akan menjadi input gerbang kemudian, ilmuwan komputer dapat membuktikan bahwa setiap perhitungan layak dapat dilakukan.

Quantum Logic Gates, Prosedur berikut menunjukkan bagaimana cara untuk membuat sirkuit reversibel yang mensimulasikan dan sirkuit ireversibel sementara untuk membuat penghematan yang besar dalam jumlah ancillae yang digunakan :

-  Pertama mensimulasikan gerbang di babak pertama tingkat.
-  Jauhkan hasil gerbang di tingkat d / 2 secara terpisah.
-  Bersihkan bit ancillae.
-  Gunakan mereka untuk mensimulasikan gerbang di babak kedua tingkat.
-  Setelah menghitung output, membersihkan bit ancillae.
-  Bersihkan hasil tingkat d / 2.

Sekarang kita telah melihat gerbang reversibel ireversibel klasik dan klasik, memiliki konteks yang lebih baik untuk menghargai fungsi dari gerbang kuantum. Sama seperti setiap perhitungan klasik dapat dipecah menjadi urutan klasik gerbang logika yang bertindak hanya pada bit klasik pada satu waktu, sehingga juga bisa setiap kuantum perhitungan dapat dipecah menjadi urutan gerbang logika kuantum yang bekerja pada hanya beberapa qubit pada suatu waktu. Perbedaan utama adalah bahwa gerbang logika klasik memanipulasi nilai bit klasik, 0 atau 1, gerbang kuantum dapat sewenang-wenang memanipulasi nilai kuantum multi-partite termasuk superposisi dari komputasi dasar yang juga dilibatkan. Jadi gerbang logika kuantum perhitungannya jauh lebih bervariasi daripada gerbang logika perhitungan klasik.


4.     Algoritma Shor

Algoritma Shor, dinamai matematikawan Peter Shor, adalah algoritma kuantum yaitu merupakan suatu algoritma yang berjalan pada komputer kuantum yang berguna untuk faktorisasi bilangan bulat. Algoritma Shor dirumuskan pada tahun 1994.  Inti dari algoritma ini merupakan bagaimana cara menyelesaikan faktorisasi terhaadap bilanga interger atau bulat yang besar.
Efisiensi algoritma Shor adalah karena efisiensi kuantum Transformasi Fourier dan modular eksponensial. Jika sebuah komputer kuantum dengan jumlah yang memadai qubit dapat beroperasi tanpa mengalah kebisingan dan fenomena interferensi kuantum lainnya, algoritma Shor dapat digunakan untuk memecahkan kriptografi kunci publik skema seperti banyak digunakan skema RSA.

Algoritma Shor terdiri dari dua bagian:
 
  • Penurunan yang bisa dilakukan pada komputer klasik, dari masalah anjak untuk masalah ketertiban -temuan. 

  • Sebuah algoritma kuantum untuk memecahkan masalah order-temuan. Hambatan runtime dari algoritma Shor adalah kuantum eksponensial modular yang jauh lebih lambat dibandingkan dengan kuantum Transformasi Fourier dan pre-/post-processing klasik. Ada beberapa pendekatan untuk membangun dan mengoptimalkan sirkuit untuk eksponensial modular. Yang paling sederhana dan saat ini yaitu pendekatan paling praktis adalah dengan menggunakan meniru sirkuit aritmatika konvensional dengan gerbang reversibel , dimulai dengan penambah ripple-carry. Sirkuit Reversible biasanya menggunakan nilai pada urutan n ^ 3, gerbang untuk n qubit. Teknik alternatif asimtotik meningkatkan jumlah gerbang dengan menggunakan kuantum transformasi Fourier, tetapi tidak kompetitif dengan kurang dari 600 qubit karena konstanta tinggi.


Sumber :

http://djuneardy.blogspot.co.id/2015/04/quantum-computing-entanglement.html

https://amoekinspirasi.wordpress.com/2014/05/15/pengertian-quantum-computing-dan-implementasinya/
Subscribe to RSS Feed Follow me on Twitter!